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Results are presented from controlled field tests of two methods for detecting and diagnosing
faults in HVAC equipment. The tests were conducted in a unique research building that featured
two air-handling units serving matched sets of unoccupied rooms with adjustable internal loads.
Tests were also conducted in the same building on a third air handler serving areas used for
instruction and by building staff. One of the two fault detection and diagnosis (FDD) methods
used first-principles-based models of system components. The data used by this approach were
obtained from sensors typically installed for control purposes. The second method was based on
semiempirical correlations of submetered electrical power with flow rates or process control
signals.

Faults were introduced into the air-mixing, filter-coil, and fan sections of each of the three
air-handling units. In the matched air-handling units, faults were implemented over three blind
test periods (summer, winter, and spring operating conditions). In each test period, the precise
timing of the implementation of the fault conditions was unknown to the researchers. The faults
were, however, selected from an agreed set of conditions and magnitudes, established for each
season. This was necessary to ensure that at least some magnitudes of the faults could be
detected by the FDD methods during the limited test period. Six faults were used for a single
summer test period involving the third air-handling unit. These fault conditions were completely
unknown to the researchers and the test period was truly blind.

The two FDD methods were evaluated on the basis of their sensitivity, robustness, the number
of sensors required, and ease of implementation. Both methods detected nearly all of the faults
in the two matched air-handling units but fewer of the unknown faults in the third air-handling
unit. Fault diagnosis was more difficult than detection. The first-principles-based method mis-
diagnosed several faults. The electrical power correlation method demonstrated greater success
in diagnosis, although the limited number of faults addressed in the tests contributed to this suc-
cess. The first-principles-based models require a larger number of sensors than the electrical
power correlation models, although the latter method requires power meters that are not typi-
cally installed. The first-principles-based models require training data for each subsystem
model to tune the respective parameters so that the model predictions more precisely represent
the target system. This is obtained by an open-loop test procedure. The electrical power correla-
tion method uses polynomial models generated from data collected from �normal� system oper-
ation, under closed-loop control.
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Wright is a senior lecturer and Richard A. Buswell is a research associate with Loughborough University, Department
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Both methods were found to require further work in three principal areas: to reduce the num-
ber of parameters to be identified; to assess the impact of less expensive or fewer sensors; and
to further automate their implementation. The first-principles-based models also require further
work to improve the robustness of predictions.

INTRODUCTION
In the last decade, a considerable amount of research has been carried out in the field of fault

detection and diagnosis in HVAC systems. Hyvarinen and Karki (1996) summarized the efforts
of an international collaboration [International Energy Agency (IEA) Annex 25] that listed typi-
cal faults in heating systems ranging from oil burners to district heating distribution systems;
vapor-compression and absorption refrigeration machines; variable air volume (VAV) air-
handling units (AHUs); and thermal storage systems. This work also produced a number of fault
detection and diagnosis (FDD) methods:

Innovation approaches
� Physical models
� Time-series models
� State-estimation methods

Parameter-estimation approaches
� Methods based on physical models
� Characteristic curves
� Characteristic parameters

Classification approaches
Topological case-based modeling

� Artificial neural networks
Expert-system approaches

� Rule-based methods
� Associative networks

Qualitative approaches
� Formal qualitative approaches
� Fuzzy models

Many participants in this effort described their own methods; those of a generic nature or that
focused on AHUs include Dexter and Benouarets (1996), Haves et al. (1996), Lee et al. (1996a,
1996b), Salsbury (1996), Yoshida et al. (1996), and Peitsman and Bakker (1996). These meth-
ods were developed and tested with simulations and laboratory test rigs where a high degree of
experimental control can be applied. Such issues as interfaces with commercially available con-
trol systems, identification of the intended users and their needs, and methods for testing and
evaluating the performance of FDD systems in systems installed in real buildings were not
addressed. IEA Annex 34 followed Annex 25 and focused on the practical application of FDD
techniques in real buildings (Dexter and Pakanen 2001). 

ASHRAE sponsored the research described in this paper as a contribution to the global effort
to demonstrate FDD methods in real buildings. This research focused on demonstrating FDD
methods applied to systems installed in real buildings, encompassing the FDD methods, results
from the trials, and the evaluation of the FDD method performance. The three objectives of the
research were to

1. Demonstrate the operation of FDD methods for HVAC systems in a realistic building envi-
ronment
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2. Compare the performance of different FDD methods for different types of faults in AHUs
and to assess the costs of their implementation

3. Archive and document the test data so they can be used to develop and test other FDD
methods

Each of these objectives carried equal weight and each was largely met. This paper reports the
completed work with respect to the first two objectives. A more substantial account and
archived data are available in the final report to ASHRAE (Norford et al. 2000). 

This research considered VAV AHUs only, although the methods can be applied to other types
of HVAC systems. Both methods were based on a reference-model approach, where measure-
ments from the system are compared to model predictions. A significant difference between the
model predictions and the observations indicates that the system has deviated from the expected
operating condition, which is taken to indicate the presence of a fault. The first-principles-based
approach modeled the subsystem components and used fluid (air/water) quantity and property
measurements and control-signal observations. The detection of faults focused on the effect of the
fault condition on the output of the system process. The electrical power correlation method
related electrical power measurements to fluid quantity and property measurements and control-
signal observations; changes in the correlations were considered to be faults.

A description is given of the test building and the HVAC systems. The faults, their implemen-
tation and the FDD methods are described. The results from the four test periods are presented.
The methods are evaluated on the basis of the accuracy, calibration, and cost of the required sen-
sors; the ease of implementation of the methods, including selection and estimation of the model
parameters and thresholds; the sensitivity and robustness of the methods in fault detection; and
their success in fault diagnosis. 

BUILDING, SYSTEMS, AND FAULTS
The fault-test program was conducted in a unique building that combined laboratory testing

capability with real building characteristics and was capable of simultaneously testing two full-
scale, commercial building systems side-by-side with identical thermal loads. The building was
equipped with three VAV AHUs. Two were nominally identical (AHU-A and AHU-B), each
serving four test rooms (Figure 1). The building had a true north-south solar alignment so that
the pairs of test rooms had nearly identical exposures to the external thermal loads. The test
rooms were unoccupied but were equipped with two-stage electric baseboard heaters to simulate
thermal loads and with two-stage room lighting, both scheduled to represent various usage pat-
terns. The third AHU (AHU-1) served the general areas of the facility including offices, recep-
tion space, a classroom, a computer center, a display room, service spaces, and a media center.
A second classroom (not shown in Figure 1) was added to the east side of the building during the
later stages of this project. AHU-1 was subject to variable occupant, lighting, external, and inter-
nal loads.

The test rooms, heating and cooling loops, and AHUs were well instrumented, including watt
transducers for all components of interest. The A and B test rooms were individually controlled
by a single commercial energy-management and control system (EMCS) and the general areas
were controlled by a second EMCS. The building had a structural steel frame with internally
insulated, pre-cast concrete panels, a flat roof, slab-on-grade flooring, and a floor area of 862 m2

(9272 ft2), including the new classroom. The east, south, and west test rooms each had 6.9 m2

(74 ft2) windows with double-layer, clear glass.
The heating plant consisted of a gas-fired boiler, circulation pumps, and the necessary control

valves. Heating operation of the HVAC systems was not required as part of the tests conducted in
this research, other than the preheating of the outside air during winter operation to simulate



44 HVAC&R RESEARCH

higher outside temperatures and force the HVAC systems into economizer mode. The cooling
plant (Figure 2), consisted of a nominal 35 kWthermal (10 ton) two-stage, reciprocating air-cooled
chiller; a 525 kWhthermal (149 ton ⋅h) thermal energy storage (TES) unit that was isolated from the
cooling system for this research; and chilled water supplied by a central facility, with pumps,
valves, and piping to circulate chilled water through the HVAC components.

The major components of the AHUs were the recirculated air, exhaust air, and outdoor air
dampers; cooling and heating coils with control valves; and the supply and return fans (Figure
3). Ducts transferred the air to and from the conditioned spaces. Both the supply and return fans
were controlled with variable-frequency drives. An additional heating coil was installed for this
research on AHU-A and B, between the outside air (OA) inlet and the flow and temperature sen-
sors. This coil was employed during the winter test period to preheat the outside air so as to
force the control system into the free-cooling mode. AHU-A and B were identical, while AHU-
1 was similar but larger to accommodate higher thermal loads. Air from the AHUs was supplied
to VAV box units, each having electric or hydronic reheat.

The supply fan speed for all three AHUs was controlled to regulate supply duct static pres-
sure. The AHU-A and AHU-B return fans were controlled to maintain a constant percentage of
supply airflow; in AHU-1, the return fan control signal was a constant percentage of the supply
fan control signal. The chilled water flow rate through the cooling coils in AHU-A and AHU-B
was controlled by three-port mixing valves in a diverting application. A two-port valve was used
in AHU-1.

The requirements for this project stipulated that a minimum of six faults be investigated, with
at least two degradation faults and at least one fault in each of the three AHU subsystems (air-

Figure 1. Plan of Test Building
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Figure 2. Chilled Water Flow Circuit in Test Building
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mixing, filter-coil, and fan). Table 1 shows the seven selected faults and their method of imple-
mentation for AHU-A and AHU-B. Although faults implemented through software or easily dis-
connected hardware (such as actuator linkages) were readily introduced, others required
substantial system modification, including the installation of bypass piping and additional valves. 

It was necessary, in the context of the research, to ensure that both FDD methods were (in
principle) capable of detecting all of the faults. Clearly, little would be learned from a series of
null results. This criterion eliminated some faults, such as temperature sensor faults that the
electrical power method would have difficulty detecting. This criterion was relaxed for tests
with AHU-1, discussed later. 

Table 2 indicates that each fault was implemented in at least two of the three test periods held
during summer, winter, and spring seasons. Each test period consisted of a week of controlled
tests, when the research staff of the test building introduced faults known to the investigators, a
short analysis period, and a week of blind tests. For each blind test period, the list of possible
faults was made known, but not the order of implementation or whether they were implemented
at all. The lists for each season excluded faults that would not be seen in that season. For exam-
ple, the recirculation damper would normally be fully open in hot weather (minimum outside
air) and a damper leak could not be detected. Abrupt faults were typically implemented over a
24 h period while most degradation faults required three days, one for each of three stages. The
three stages of the drifting pressure sensor fault were introduced over a single day.

Fault magnitudes were established during an initial period when the FDD methods were com-
missioned and the procedures for introducing faults and the HVAC systems were developed.
The magnitudes of the degradation faults were selected such that it was anticipated that the two
FDD methods would be able to detect the largest level, should be able to detect the middle level

Figure 3. Air-Handling Unit in Test Building
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and could possibly detect the lowest level. Fault magnitudes were consistent in each of the three
test periods. Constant-magnitude faults provided a firmer basis for evaluating the FDD methods
and were implemented with less difficulty than the variable-magnitude faults (a change of fault
magnitude over different occurrences at different times) that would likely occur in practice.
HVAC system commissioning consisted primarily of sensor calibration and establishing stan-
dard system operating configurations; the latter was required because the research facility
altered the systems between test periods to meet the needs of other research programs. The con-
figuration setup, which proved to be a major task for the test-building staff, encompassed fan
control algorithms, isolation of the thermal storage tank (which provided a thermal capacitance
that interfered with analysis of chiller cycling periods), and operating schedules for both HVAC
equipment and false loads in the test rooms.

A more realistic set of blind tests was conducted with AHU-1, the air handler serving areas of
the building occupied by research staff and classroom visitors. Four days of normal operation
for training FDD methods and 17 days for fault introduction were included in a summer period
of about six weeks. Building loads were not controlled and four of the six faults (listed in Table
3) had not been implemented in AHU-A and AHU-B and were completely unknown to the
investigators. This test period was considerably longer than each of the three test periods on the
matched AHUs, and increased the possibility of naturally occurring faults.

Two of the faults in this program produced signatures different from the naturally occurring
faults they were intended to represent: the leaky cooling coil valve and the coil capacity fault.
The leaking valve was implemented with a specially installed bypass valve that generated the
same thermal effect as a leakage past a closed control port, but changed the flow resistance. The
coil capacity fault mimicked the impact of water-side fouling on heat transfer across the cooling
coil to some extent. A simpler alternative to replacing the existing coil with an older coil with
tubes fouled with calcium carbonate was to close a valve in the inlet leg to the coil, thus increas-

Table 1. Method of Implementation of Faults
Fault Type Implementation
Air-Mixing Section

Stuck-closed recirculation 
damper

Abrupt Application of a control voltage from an independent 
source to maintain the damper in the closed position.

Leaking recirculation 
damper

Degradation Removal of the recirculation damper seals, with one seal 
removed for the first fault stage, two for the second, and 
all seals for the third stage. 

Filter-Coil Section
Leaking cooling coil valve Degradation Manual opening of a coil bypass valve.
Reduced coil capacity 
(water-side)

Degradation Manual throttling of the cooling coil balancing valve, to 
70%, 42%, and 27% of the maximum coil flow of 1.7 L/s 
(27.5 gpm) for the three fault stages. 

Fan 
Drifting pressure sensor Degradation Introduction of a controlled leak in the pneumatic signal 

tube from the supply duct static pressure sensor to the 
transducer, to a maximum reduction of 225 Pa (0.9 in. of 
water).

Unstable supply fan 
controller

Abrupt Introduction of alternative gains for the PID controller that 
adjusts fan speed to regulate static pressure.

Slipping supply fan belt Degradation Adjustment of fan belt tension to reduce maximum fan 
speed by 15% at 100% control signal for the first stage 
and 20% for the second stage. The third stage had an 
extremely loose belt with variable fan speed.
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ing the resistance to water flow. This change in flow resistance became the basis for its detection
with the electrical power FDD method. 

Daily data sets for normal and faulty operation were assembled by the test-building staff from
logs made by the EMCSs and were posted for electronic transfer to the investigators� home sites. 

DETECTION AND DIAGNOSIS
The two fault detection methods compare the differences between the observed system behav-

ior and a reference model of the system operation. The approaches differ significantly in how the
fault effects are observed. The first-principles-based method considers the performance of the
monitored system in terms of the system output useful to the air-conditioning process. In this case,
the model predicts the temperature of the air or the static air pressure at the outlet of the compo-
nent. A fault can be described in these terms as a degradation in the expected system performance.

Table 2. Faults Introduced into AHU-A and AHU-B During Three Blind Test Periods
Fault Summer Winter Spring
Air-Mixing Section

Stuck-closed recirculation damper X X
Leaking recirculation damper X X

Filter-Coil Section
Leaking cooling coil valve X X
Reduced coil capacity (water-side) X X

Fan 
Drifting pressure sensor X X X
Unstable supply fan controller X X X
Slipping supply fan belt X X

Table 3. Faults Introduced into AHU-1 During Blind Test Period and
Their Method of Implementation

Fault Type Implementation
Air-Mixing Section

Stuck-closed recirculation 
damper 

Abrupt Application of a control voltage from an independent 
source to maintain the damper in the closed position 
for about 24 h

Stuck-open outside air 
damper

Abrupt Application of a control voltage from an independent 
source to maintain the damper in the open position for 24 h

Filter-Coil Section
Leaking heating coil valve Abrupt Adjustment of output voltage to the heating coil valve, 

causing it to unseat and leak for about 29 h
Fouled cooling coil Degradation Blockage of the cooling coil with a curtain drawn from 

the bottom to cover 25%, 50%, and 75% of the 61 cm 
(24 in.) coil in the three fault stages

Fan 
Drifting pressure sensor Degradation Introduction of a controlled leak in the pneumatic signal 

tube from the supply duct static pressure sensor to the 
transducer, with pressure reduced by 50, 100, and 
150 Pa in the three fault stages (0.2, 0.4, and 0.6 in. of 
water) and each stage implemented for at least 6 h

Loss of control of supply 
fan

Abrupt Supply fan VFD isolated from EMCS and operated at a 
constant speed for about 23 h
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The electrical power correlation method uses models derived from the system characteristics that
relate electrical load to certain variables. This method predicts the expected power consumption.
In this case a fault can be described as a change in the expected system energy consumption. 

Both methods can take advantage of certain fault characteristics and not of others. The first-
principles-based approach will always detect a degradation in the performance of the thermo-
fluid system (as long as it is significant), regardless of the cause. The electrical power correlation
method will not detect a fault that affects performance but has no effect on the electrical load. It
is, however, predisposed to generating an operating cost associated with the faulty behavior and it
can, in principle, detect faults associated with motors and drive trains that the first-principles-
based approach cannot detect. 

Fault diagnosis is also based on the information available to each method. The sensors required
to implement FDD are one principal difference between the two methods. The first-principles-
based approach uses measurements typically installed for control (temperatures, humidities, flow
rates, etc.). One disadvantage with this approach is that in general terms there can be less control
over the quality of these measurements in any given installation. The electrical power correlation
method uses sensors over and above those normally installed, but these are more focused for the
intended application and are not as susceptible to poor installation and maintenance.

First-Principles-Based Models with Thermo-Fluid Measurements
First-principles-based (or analytical) models can be used as a reference for the �correct� or

expected operation of a HVAC system. The approach used in this research relied on the sensors
typically installed in most VAV systems for control. Three subsystem models [described more
fully in Norford et al. (2000)] were used to implement the FDD scheme: a fan/duct model of the
air system, an economizer model, and a model of the coiling-coil subsystem. Figure 4 demon-
strates the modeling arrangement. The black dots indicate where the comparisons to the obser-
vations from the real system were made, and hence where the fault detection for each subsystem
was focused. Simple, steady-state simulations of the subsystems are formed by the models,
which are based on the following principles:

� The fan/duct model is based on the fan laws and simple quadratic expressions for the change
in system resistance and predicts the supply air static pressure.

� The economizer model is based on the analytical representation of the mixed-air condition as
a function of damper position and the inlet temperatures and humidities. The model also
includes an actuator model.

� The cooling coil model is based on the SHR method effectiveness-NTU heat and mass trans-
fer calculation method [similar to the ASHRAE 3-line method; a review of both methods is
given by Stephan (1994)]. The subsystem model also includes fan temperature rise and mod-
els for the control valve and the actuator.

� The fan-temperature-rise model is a simple addition to the air temperature, linearly dependent
on the fan-control signal.

� The valve model is based on a first-principles analysis of the water-circuit resistance with
respect to the control valve. The model predicts the mass flow rate of water through the coil, a
typically unmeasured variable.

� The actuator model is an analytical representation of the movement of the actuator in
response to a control signal. This models the dead-bands at either end of the operating range
and any hysteresis (slack in the linkage) that may be present in the system.

The models have parameters for which values must be estimated for a specific system. The
parameters are designed, as far as possible, to represent some tangible system characteristic and
give greater precision in prediction. An example of this is the actuator �low activation point�
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parameter, which describes the value of the control signal required before the valve stem starts
to move as it is opened from the closed position (i.e., dead-band). Some of the model parameters
can be obtained from design information or inspection of the installed system. The face area and
number of rows and circuits in the cooling coil are examples. The remaining parameters are
identified simultaneously for each subsystem model. The model parameters are estimated by
applying a nonlinear optimization technique, minimizing the model prediction errors in a least-
squares sense. The data used for this procedure were generated by applying a sequence of open-
loop �steps� in the inputs to capture the system characteristics when the system was in a normal
(fault-free) condition. 

With the system models characterized, model predictions can be applied to the observations to gen-
erate the �prediction error� (demonstrated in the top halves of Figures 5 and 6). The models only apply
to observations that are close to steady state and a steady-state filter removes data containing tran-
sients. A lack of steady-state data was used to identify the presence of oscillatory, or unstable, control.

Figure 4. First-Principles-Based Model Functionality
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Some prediction error will always exist due to uncertainties in the measurements and unmod-
eled system disturbances. Statistically based thresholds are applied to the prediction error, such
that a certain magnitude of error is required before triggering an alarm. 

Once an alarm has been identified, the cause is diagnosed. Two methods were investigated in
this work, fault diagnosis by (1) expert rules and by (2) recursive parameter estimation. The
schemes are shown in Figures 5 and 6, respectively. Figure 5 shows that the �innovations� (the
magnitude of the prediction error over and above the thresholds) were split into three �bins.�

Figure 5. Method for Fault Detection and Fault Diagnosis Using Expert Rules
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The bins contain the average magnitudes of the innovations, exponentially weighted with age.
Each bin represents a portion of the operating space of the monitored process. Crisp expert rules
were then applied to the average values in these bins to determine the cause of the fault.

In the recursive parameter estimation scheme, some of the parameters are designed to repre-
sent the effects of the faults on the system output. These parameters are recursively re-estimated
to track the developing fault. The algorithm minimizes the prediction error and uses the sensitiv-

Figure 6. Method for Fault Diagnosis by Recursive Parameter Estimation
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ity coefficients of the fault parameters with respect to the model output to drive the estimation
procedure (Salsbury 1996). As the fault develops, the current fault parameter values implicitly
describe the state of the system and hence, diagnose the state of the system.

Gray-Box Correlations with Electrical Measurements
The electrical power correlation FDD method produced prediction errors in electrical power.

The method also made use of statistically derived confidence intervals for predictions of perfor-
mance under normal operation. The method is a semiempirical approach that correlates mea-
sured fan or pump power with such exogenous variables as airflow, motor speed control signals
and actuator position control signals. Power correlations were third-order polynomials; confi-
dence intervals reflected the influence of disturbances during training periods, such as those due
to normal variation in damper positions. Oscillatory power data, indicative of unstable local-
control loops, were detected via a calculation of signal variance over a sliding window of data
points; this calculation effectively acted as a steady-state filter by excluding oscillatory data
from comparison with power correlations established during the training phase.

Analysis of chiller power (associated with the economizer and cooling coil valve leakage
faults) was more difficult than for fans (air system faults) and pumps (cooling coil undercapacity
fault), for two reasons. First, the chiller in the test building was a two-stage reciprocating unit
with discrete power levels (0, 5, and 10 kW). In principle, it was possible to time-average the
power to obtain a continuous power variable suitable for the same sort of power correlations
used for fans and pumps. In practice, the cycling frequency was often long (i.e., on the order of
30 minutes), making it impossible to calculate a short-term power average needed for reasonable
correlation with driving variables. Second, chiller power was strongly influenced by environ-
mental conditions (expressed by dry-bulb and wet-bulb temperatures and solar radiation) and by
building internal loads. These variables are not all easily measured. Even those that are directly
and simply measurable require sensors that have a cost associated with them and are subject to
errors. It is necessary to either include these influences in a model of chiller power or exclude
them and limit the analysis of chiller power to narrow and known operating conditions. 

The FDD method developed and applied in the test building assessed chiller cycling periods
under two low-load conditions where it was, in principle, possible to discern a change in chiller
loading due to damper and valve leaks.

The method relied heavily on one-minute-average data from installed power transducers to
assess the benefits of such data and set the stage for a future cost-benefit analysis. A detailed dis-
cussion of the method is presented in a companion paper (Shaw et al. 2002), which includes
examples of power correlations, detection of chiller cycling, and analysis of power oscillations.

Table 4 summarizes the types of electrical power analyses used in this method, along with a
list of possible faults that each analysis can detect. The list of faults is not exhaustive but is long
enough to indicate the difficulties in distinguishing a particular fault from other possible causes
of the same deviation between predicted and measured electrical power.

Expert rules were used for limited fault diagnosis. Table 4 indicates how rules can distinguish a
slipping fan belt from a fault caused by a change in flow resistance: the former leads to power
measurements that differ from the predicted value for a given motor speed while the latter does
not. (For the slipping fan belt, the reduction in power due to reduced airflow was a stronger effect
than an increase in thermal dissipation from the fan belt itself, which became quite hot when slip-
ping.) Although careful analysis of fan curves indicates that this statement is not entirely true, the
impact of a change in duct pressure on the power-speed correlation is sufficiently minimal to be
of no concern. As a second example, the leaky recirculation damper or cooling coil valve will
affect chiller power but not fan power for a given airflow. 
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Ideally, a given power signature would be associated with nonoverlapping lists of faults, pro-
viding a high level of �orthogonality� useful for fault diagnosis. As can be seen in Table 4, this
ideal was not achieved. Errors in power transducers and changes in fan or motor performance
will affect both types of fan power correlations. In the blind tests, it was possible in some cases
to distinguish faults associated with a given power correlation by limiting the analysis to a small
range of the correlation or to a narrow band of another variable:

� The stuck-closed recirculation damper could be distinguished from the pressure sensor offset
in the test building via analysis of power at low airflows. The impact of the stuck-closed recir-
culation damper fault was exacerbated in the early evening, when the air handlers were still
running but, in cold or hot weather, the outdoor air damper was fully closed. The supply fan
then drew air across two closed dampers. There is substantial variation across buildings in
control strategies at the beginning and end of the working day and it is difficult to generalize
such an approach. Even in the test building, this strategy could not be generalized to AHU-1,
which operated continuously.

� The leaky cooling coil valve and the leaky recirculation damper could be distinguished with
the help of measurements of the valve position control signal and outdoor temperature (Shaw
et al. 2002).

This approach to fault diagnosis, while unable to distinguish a large set of possible faults, was
easily implemented in rules. For the blind tests, where the number of possible faults was limited,

Table 4. Nonexhaustive Listing of Faults Associated with a Given
Electrical Power Signature

Type of
Electrical Power Analysis

Possible Faults Causing a Deviation Between Predicted 
and Measured Electrical Power

Polynomial correlation of supply fan 
power with supply airflow

Change in airflow resistance, possibly due to stuck air-
handler dampers or fouling of heating or cooling coils

Static pressure sensor error (affects portion of fan power due 
to static pressure)

Flow sensor error
Power transducer error
Change in fan efficiency, caused by change in blade type or 

pitch, or use of VFD in lieu of inlet vanes
Change in motor efficiency

Polynomial correlation of supply fan 
power with supply fan speed control 
signal

Slipping fan belt
Disconnected control loop (fan speed differs from control 

signal)
Power transducer error
Change in fan efficiency
Change in motor efficiency

Polynomial correlation of chilled water 
pump power with cooling coil control 
valve position control signal

Change in water flow resistance, possibly due to constricted 
cooling coil tubes or piping

Disconnected control loop
Power transducer error
Change in pump efficiency
Change in motor efficiency

Detection of change in cycling frequency 
for two-stage reciprocating chiller

Leaky cooling coil valve
Leaky recirculation damper

Detection of power oscillations Unstable local-loop controller
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one rule was �if the electrical power exceeds the confidence interval and the airflow is less than
a threshold, then the fault is a stuck-closed recirculation damper.� More generally, the �if-then�
statement could be modified to include a larger list of possible causes of the detected fault.

RESULTS
The results from the FDD trials on AHU-A/B and AHU-1 are shown in Tables 5 through 8.

The original intent of the first-principles-based approach was to not use the mixed-air tempera-
ture sensor because this is not commonly available. The predictions of the mixed-air humidity
ratio and temperature by the economizer model were used as inputs to the cooling coil model.
The magnitudes of prediction errors associated with normal operation in the mixing box and
cooling coil (due to the influence of unmodeled disturbances) led to a reduction in sensitivity to
fault detection. There was also a significant reduction in the isolation of the cause of faults
(faults possibly being in one of two subsystems), which led to ambiguous diagnoses. The model
parameters were re-estimated using the mixed-air temperature measurement and the summer
tests were rerun with the addition of this measurement. The analyses for the other season were
carried out using the same models.

Table 5 describes the first blind test period, conducted in summer conditions on AHU-A and
AHU-B. Tables 6 and 7 describe the winter and spring blind test periods. The tests on AHU-1
are summarized in Table 8; for these tests the first-principles-based FDD approach gave a single
diagnosis through application of the RPE method and expert rules.

For both the first-principles-based models and the electrical power correlation method, the
results are discussed first for AHU-A and AHU-B and then AHU-1. Where individual faults are
highlighted, the order is the same as that presented in Tables 2 and 3. 

First-Principles Models with Thermo-Fluid Measurements
In general, the first-principles-model-based FDD method proved to be effective in the detec-

tion of the faults implemented on AHU-A and B. All faults were detected in each season they
were implemented, with the exception of the leaking recirculation damper and leaking cooling
coil valve. Diagnosis was less reliable, in that no single method of diagnosis (expert rules or
recursive parameter estimation) was able to provide a diagnosis for all fault conditions. 

A leaking recirculation damper can be expected to produce small differences between the
expected and observed mixed-air temperature. This is, however, a function of the temperature
difference between the ambient and return air streams (when these temperatures are equal, no
faults can be detected using temperature measurements) and the size of the leakage. In order to
detect these changes, the model of the economizer must be quite precise in its prediction of the
mixed-air temperature. The principal factors affecting the precision of the model were

� Stratification at the locations of the temperature sensors (return and mixed), which affects the
calibration of the model parameters and subsequent calculations of prediction error.

� Localized offsets caused by differences between the measured ambient-air temperature and
the temperature of the ambient air entering the inlet duct, some distance away. The effect was
similar to the above point.

� Unmodeled effects, of which there were two primary sources:
� The pressure/resistance characteristics for the fan/duct system were not constant as

a result of the fan control strategy (return fan runs at a fixed percentage of the sup-
ply air volumetric flow rate). This meant that at different fan speeds, different pro-
portions of the ambient air and return air were mixed for a given damper position.
Prediction errors are generated because the model assumes that these proportions
are unchanging (i.e., that the system is well balanced).
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� At certain conditions, the fan/duct system imbalance also caused ambient air to
flow in through the exhaust grille, resulting in a higher proportion of the ambient
air in the mixed air than expected by the model. This problem was exacerbated in
the system under investigation because of the increased resistance to airflow
through the ambient air inlet duct due to the installation of the preheat coil.

These problems can be considered to be system faults and not problems with the FDD
method. The last point highlights the disadvantages of an analytical modeling approach applied
to observations of the result of the process, rather than modeling the process itself. Given a more
detailed fan/duct system model, it may be possible to predict the airflow rates within the system
(within a tolerable degree of uncertainty), which would eliminate the need for the mixing box
model as presented in this work.  

Table 5. Detection and Diagnosis of Faults During Summer Blind Test Period for 
AHU-A and AHU-B

Test
Day

AHU

Physical Models

Electrical Power
Models

Detect
from 

Innovations 

Diagnose 
from

Expert
Rules

Diagnose 
from 

Recursive 
Parameter 
EstimationA B Detect Diagnose

1 Slipping fan belt 
(Stage 1)

No � � Yes Yes
Reduced cooling 
coil capacity
(Stage 1)

Yes Yes No Yes Yes

2 Slipping fan belt 
(Stage 2)

No � � Yes Yes
Reduced cooling 
coil capacity
(Stage 2)

Yes Yes No Yes Yes

3 Slipping fan belt 
(Stage 3)

Yes No Yes Yes Yes
Reduced cooling 
coil capacity
(Stage 3)

Yes Yes No Yes Yes

4 No fault No fault � � No fault �
Unstable 
pressure control

Yes* � � Yes Yes

5 Unstable 
pressure control

Yes* � � Yes Yes
No fault No fault � � No fault �

6 Static-pressure 
sensor offset 
(Stages 1-3)

Yes No Yes Yes Yes
Stuck-closed 
recirculation 
damper

Yes No Yes Yes Yes

7 Stuck-closed 
recirculation 
damper

 Yes Yes Yes Yes Yes
Slipping fan belt 
(Stage 1)

No � � No �

*The unstable pressure controller was detected via the steady-state filter, which indicated that the measured pressure was in a dynamic
state for a prolonged period. No detection or diagnosis method was applied, because the measurements did not pass the filter.
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Estimating the parameters for the economizer model means that either the system has to be bal-
anced correctly or the training data (ideally) need to encompass the complete range of expected
airflow/resistance characteristics. If the model does not describe its output in these terms, then
robustness comes through increased uncertainty in the model output (wider confidence limits or
thresholds) and reduced sensitivity in fault detection. Practically, the model training data have to
be collected at one or two airflow rates. An improvement would be to retune the thresholds as
new regions of operation are encountered, to maintain maximum sensitivity.

Table 6. Detection and Diagnosis of Faults During Winter Blind Test Period for
AHU-A and AHU-B

Test
Day

AHU

Physical Models

Electrical Power
Models

Detect
from 

Innovations 

Diagnose 
from

Expert
Rules

Diagnose 
from 

Recursive 
Parameter 
EstimationA B Detect Diagnose

1 No fault No fault � � No fault �
Stuck-closed 
recirculation 
damper

Yes1 No Yes2 Yes Yes

2 Leaking cooling 
coil valve
(Stages 1-3)

No � � Yes Yes
Slipping fan belt 
(Stage 1)

No � � No �

3 Leaking 
recirculation 
damper
(Stage 1)

No � � Yes Yes
Slipping fan belt 
(Stage 2)

No � � No �

4 Leaking 
recirculation 
damper
(Stage 2)

No � � Yes Yes
Slipping fan belt 
(Stage 3)

Yes Yes3 Yes Yes Yes

5 Leaking 
recirculation 
damper (Stage 3)

No � � Yes Yes
Static pressure 
sensor offset 
(Stages 1- 3)

Yes Yes Yes Yes Yes

6 Static pressure 
sensor offset 
(Stages 1- 3)

Yes Yes4 Yes5 Yes Yes
Unstable 
pressure control

Yes Yes Yes Yes Yes

7 Unstable 
pressure control

Yes6 � � Yes Yes
No fault No fault � � No fault �

1Alternative diagnosis of static pressure sensor drift.
2Alternative diagnosis of slipping fan belt.
3Alternative diagnosis of unknown mixing box fault.
4Alternative diagnoses of excessive control dynamics and excessive outside air (due to flow of outdoor air into the
exhaust damper, an actual�not artificial�system fault).
5Alternative diagnosis of slipping fan belt.
6The unstable pressure controller was detected via the steady-state filter, which indicated that the measured pressure was
in a dynamic state for a prolonged period. 
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The lower levels of leakage in the cooling coil valve were difficult to detect. A significant fac-
tor that resulted in this insensitivity was the modeling of the valve. The nonlinear characteristics
associated with the heat exchanger process combined with the poorly balanced chilled water cir-
cuit resulted in very high gain as the valve opens. This is difficult to model and results in a high
degree of uncertainty in the low region of operation. It was found that leakage could only be
detected when the valve was closed.

The leakage fault was not detected during the winter test period, which should have been the
period when the fault was most visible. The steady-state detector deemed that an extremely high
proportion of the data were transient and hence there were almost no data with which to monitor
the system. This excessive dynamic activity in the coil control system was due to the cycling of
the chilled water inlet temperature, due to the close coupling of the chiller to the coil and to the
two-stage control of the reciprocating chiller. Although this could be considered to be a design
fault, these effects were considered to represent �acceptable operation.� The steady-state thresh-
old was reset during the spring test period to allow more data through the steady-state detector
and hence permit the fault monitoring function. The relaxed steady-state criterion, however,
resulted in larger model prediction errors. The fault threshold were increased accordingly, again
reducing the sensitivity of the method to detection.

The reduced coil capacity fault implemented on AHU-A and AHU-B was easily detected with
the exception of spring operation, when only the highest level of the fault was detected. This
was attributed to the relatively low load on the coil, which limited the effect of the fault on the
coil performance.

The fan-duct reference model for the static pressure prediction was sufficiently accurate to
allow the detection of the offset in static pressure, at least for the second and third magnitudes of
the fault. The first two stages of the slipping fan belt were not detectable, although the observa-
tions from the data showed the effects on the performance to be very small. Oscillatory supply
duct pressure control was detected by a prolonged period of dynamic activity (as indicated by a
lack of steady-state data classified by the steady-state detector). This approach proved to be reli-
able: the fault was detected each time it was implemented. 

The stuck-open outside air damper fault implemented on AHU-1 was not detected. The return
fan overloaded the supply fan to such an extent that the relative proportion of the recirculation
airflow increased from normal operation. The effect of the stuck-open outside damper was
masked to the extent that the system appeared to have a fault similar to a stuck-closed outside air
or exhaust air damper. The first-principles-based method indicated that a fault condition was
present in the economizer on the day that the stuck-open damper fault was implemented,
although no firm diagnosis could be made.

Neither the leaking heating coil valve nor the fouled cooling coil surface faults were detected
in AHU-1. Both faults should have been detected by observation of the prediction error at the
supply air temperature point, although it would have been unlikely that the faults could have
been distinguished because they both result in a reduction in cooling coil capacity. Failure to
detect both faults was due to the high degree of uncertainty in the model predictions. Factors
contributing to this uncertainty that the point temperature sensors on the air-side are more sus-
ceptible to airflow-related temperature offsets such as stratification, and that the estimation of
the mixed-air humidity ratio (inlet humidity to the cooling coil) was poor, partly because of the
airflow imbalance problems discussed for AHU-A and B, and partly due to the estimation of the
parameters of the economizer model from data taken from point temperature measurements. The
cooling coil model was dehumidifying during the summer test period and model predictions
were sensitive to uncertainty in the estimate of inlet humidity. These problems led to several
false alarms during the AHU-1 test period. After completion of the test period, it was clear that
these false alarms could have been avoided by a marginal increase in the level of the thresholds. 
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Conclusive diagnosis with both the expert-rules and the recursive parameter estimation was
limited by the need for data to be available across the range of operation (low, high and mid
ranges). For example, a leaking cooling coil valve could only be distinguished from a sensor off-
set if the fault was apparent only when the control valve was closed or nearly closed. However,
during most of the tests implemented in this study, the systems remained in a narrow region of
operation. 

The problems associated with unmodeled disturbances, the lack of independence in the
parameters and tests carried out over nominally one operating condition (season) led to difficul-
ties in generating reliable performance from this method.

Gray-Box Correlations with Electrical Measurements
Results with submetered power data were very satisfactory for the three blind test periods for

AHU-A and AHU-B. Almost all faults were detected. Careful maintenance and control of the
HVAC systems and a limited pallet of faults to choose from made fault diagnosis possible,
whereas it would be substantially more difficult or impossible in a less-controlled setting.

The stuck-closed recirculation damper was detected and diagnosed in the two test periods in
which it was implemented. The leaky recirculation damper was the most difficult to detect.
Analysis of chiller cycling frequency was limited to a narrow range of outdoor temperatures, to
block the influence of outside temperature on chiller loading. Suitable conditions were present
in the late-winter test and the fault was successfully detected and diagnosed. Temperatures were
milder in the spring test and the fault was not found. A less restrictive temperature band, not
evaluated, might have made it possible to find the fault in spring at the expense of possible false
alarms.

The leaky cooling coil valve was detected and diagnosed in the two test periods in which it
was implemented. The coil capacity fault was detected and diagnosed successfully in the sum-
mer test period and was also found on two of the three implementation days in the spring test
period. It was not detected during the second of the three degradation stages in spring because
the cooling loads were relatively low and the cooling coil valve did not open to an extent suffi-
cient to reveal the fault. 

The pressure sensor offset fault was detected and diagnosed successfully in all three test peri-
ods and the unstable fan controller was detected and diagnosed in the two periods in which it
was implemented. All three degradation stages of the slipping fan belt were detected and diag-
nosed in the summer test period but only the most severe stage was found in the winter tests. At
that time, the detection algorithm required that the fan-speed control signal be 100%, an unduly
severe restriction that was met only on the last day, when there were large loads on the fan. The
detection algorithm was changed for AHU-1, to rely on confidence intervals above and below
the normal-operation correlation of fan power with speed, with no restriction on the speed signal
as a prerequisite for detection of a fault.

As noted earlier, four of the six AHU-1 faults were entirely unknown to the investigators and
had not been studied on AHU-A and AHU-B. The electrical power method successfully
detected three of the six faults (stuck-closed recirculation damper, pressure sensor error, and loss
of control of the supply fan), successfully diagnosed only one (pressure sensor error), and did
not find the three remaining faults. Balancing this mixed performance, it is worth noting that one
of the detected faults, the loss of control of the supply fan, was not among those for which the
method had been commissioned. Further, the method did not generate any false alarms. 

After the AHU-1 faults were revealed to the investigators, the electrical power FDD method
was extended and applied with more care to data recorded during days when the undetected
faults were implemented. The three faults still defied detection. Neither the stuck-open outside
air damper nor the fouling on the cooling coil affected the supply fan power for a given airflow.
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The impact of fouling on cooling coil capacity was not investigated because chiller cycling at
high loads is strongly affected by unmeasured variables (internal and solar loads, for example).
The leaking heating coil valve could not be detected via a change in power consumption of the
source of hot water because the boiler was not monitored. An analogous method was successful
in finding the leaking cooling coil valve, as already noted. While the leaking heating coil valve
did introduce a heating load on the (downstream) cooling coil that affected the chiller cycling
period, the change was not sufficiently conclusive to warrant flagging it as a fault.

DISCUSSION
All sensors required to implement the first-principles-based methods (Table 9) are typically

installed in VAV systems for controlling the HVAC processes; the sole exception is the supply
airflow sensor, which is not used when the return fan is controlled on the basis of supply fan
speed. For effective fault isolation it is desirable to generate prediction errors at the outlet of
each modeled subsystem. The attendant sensor is required to make this possible. Improvements
to the performance of the cooling coil FDD scheme could have been realized if the coil outlet air
temperature measurement was used, rather than the supply air temperature (the fan temperature
rise model would not have been necessary). 

Results from the test periods demonstrated that the accuracy of the cooling coil model predic-
tions under dehumidifying conditions might have been improved if a better estimate of the inlet
humidity ratio were available. A possible solution is the installation of an additional sensor if the
cooling coil is designed for latent duty, although the air local to the sensor location needs to be
well mixed. An alternative would be to measure the ambient airflow rate as well as the supply
airflow rate. The proportions of ambient and return air in the supply air could then be calculated
directly. 

Ideally, the outside-air temperature and humidity sensor would be located in the inlet duct to
the system rather than being external to the building to reduce the effects of improper represen-
tation of the air properties. This would inevitably increase the cost of the implementation of the
FDD scheme.

The electrical power FDD method required substantially fewer measurements, which reduced
the sensor maintenance requirements. Sensors for this method are listed in Table 9. The electri-
cal power data that are at the heart of the method are not available in typical HVAC plants. The
method as implemented in the test building required a power meter for the supply fan for each
AHU. Another power meter was required for the single onsite chiller. The apparent economy in
having just one chiller and one chiller power meter was more than outweighed by difficulties in
ascribing changes in chiller cycling to faults in a particular air handler. To provide an informa-
tive test of the electrical power FDD method, it was necessary to couple the chiller to a single air
handler and use district chilled water for the others, even when cooling loads were low and the
single chiller would have had adequate capacity. In a high-rise office building where a single
chiller serves separate air handlers on each floor, the electrical power method would not be able
to detect faults on the basis of chiller power.

The sensors available for use on this project were generally instrument-grade devices having
a higher accuracy, more stability and less drift than standard HVAC-grade devices. Exceptions
include the return air humidity sensor and the supply duct static pressure transducers, which
were standard HVAC-grade devices. Equipment costs for instrument-grade sensors are typically
3 to 5 times the cost of standard, mass-produced HVAC-grade sensors. Costs noted below
exclude installation, setup, and any onsite calibration, which is estimated to average $75 per
sensor.

Sensors that require periodic calibration, such as those measuring temperature, pressure, and
flow, were within their appropriate calibration dates to comply with certification requirements.
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Calibration represents the most significant maintenance requirement for the sensors. Typically,
the listed sensors are calibrated annually, and more frequently than sensors in a standard HVAC
system:

� The return, supply, and outside airflow rates and temperatures were measured by electronic
airflow measuring stations. Each measuring station costs $1400 and has a stated accuracy of
±2% for airflow greater than 2.54 m/s (500 fpm) and ±0.2°C (0.36°F) for temperature, with
zero long-term drift.

� Mixed-air temperatures were sensed using instrument-grade 1000-ohm platinum RTDs
arranged in a multipoint array. The array has a listed device accuracy of ±0.14°C (0.25°F) and
an average cost of $2500. Return air humidity is measured with a standard HVAC-grade
humidity sensor with an accuracy of ±3% and an equipment cost of $50.

� Supply duct static pressure transducers were standard HVAC-grade devices with a stated
accuracy of ±1% of full scale [±0.75 Pa (0.03 in. of water)]. Stability was listed as ±1.0% of
full-scale deviation from original calibration for one year under normal operating conditions.
These transducers cost $225 each, compared with $485 for sensors with an accuracy of
±0.25% of full scale, which were installed after this project was completed.

� Water temperatures were sensed with single point, direct immersion, instrumentation-grade,
1000-ohm 2-wire and 100-ohm 4-wire, platinum RTD sensors. The sensors have a stated
accuracy of ±0.14°C (0.25°F) and are very stable, with little long-term drift. These tempera-
ture sensors and related equipment have an average cost of $125 each.

� Electrical power to the supply fans, pumps and chiller was measured with precision AC watt
transducers with a stated accuracy of ±0.2%. These devices have NIST-traceable calibration.
The watt transducers cost $400 each, including $60 for calibration; the transducer for the
chiller required additional current transducers and cost $550. HVAC-grade watt transducers,

Table 9. Sensors and Control Signals Required for Implementation of Each FDD Method 
Sensor Type or
Control Signal Condition

First-Principles-
Model FDD

Electrical Power
FDD

Temperature Return air X
Outside (ambient) air X X
Mixed air X
Supply air X
Chilled water flow to coil X

Humidity Return air X
Outside (ambient) air X

Flow Supply air X X
Pressure Supply duct static pressure X X (training only)
Electrical power Chiller X

Supply fan X
Secondary chilled water pump X

Control Signal Return fan X
Economizer X
Cooling coil control valve X X
Supply fan X X

Note: All sensors and control signals are required for fault detection; there would no reduction in sensor count if moni-
toring were limited to detection and excluded diagnosis. 
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not used at this site, are available for about $250. 
� Outside air conditions were measured by an instrument-grade temperature and humidity mea-

suring weather station. A 100-ohm platinum RTD with a stated accuracy of ±0.2°C (0.36°F)
was used for temperature and a polymer sensor with a stated accuracy of ±1% (at 0 to 90%rh)
was used for humidity measurement. The measuring station has a total cost of approximately
$1000.

The overall accuracy of the instrumentation system depends on factors in addition to the
stated accuracy of the sensing device: transducers, stability of power supplies, wiring type, lead
length, A/D converters, processor resolution, scaling values and, in particular, measurement rep-
resentation of average fluid properties and quantities. The impact of these uncertainties on the
performance of FDD methods was not evaluated as part of this work. A full assessment of the
uncertainties associated with the first-principles-based FDD methods in HVAC systems is pre-
sented in Buswell (2001).

The parameters of the first-principles models need to be calibrated for each test system. Some
parameters are identified directly from design information and/or inspection. The remaining
parameters are simultaneously identified using test data from the target system. These data were
obtained by increasing the control signal to each sub-subsystem in a series of steps from 0% to
100% and back to 0%. Each step is held until steady state is considered to exist. For the tests
conducted in this research, the total time taken to commission three subsystems in one AHU
(economizer, cooling coil, and fan-duct system) was 23 h. This was controlled largely by the
time constants associated with the system and the need for the observation of a number of con-
secutive points at each step to decide whether steady-state conditions exist. To decrease this
overhead, simultaneous commissioning of all three subsystems was investigated on AHU-1
(Norford et al. 2000). The simultaneous test took 14 h to complete, saving 9 h. Alternative
schemes to generate training data may provide a quicker method of capturing the system charac-
teristics. 

The model parameters are described fully in Norford et al. (2000) and are listed in Table 10.
The commissioning tests were designed to provide data to capture the principal system charac-
teristics. It was not always possible to identify all parameters simultaneously such that each
parameter represented its prescribed system characteristic. This was caused by a lack of parame-
ter independence, which increased as the number of parameters increased (i.e., one parameter
estimate may in part be offset by the value in another and hence the subsequent parameter esti-
mates become gray). 

This phenomenon, particularly apparent in the economizer model, led to an approach in
which subsets of the parameters were estimated from the commissioning data that most
related to their effect on the model. Leakage parameters were identified from data for which
the control elements were closed (0% or 100% control signal). With the leakage parameters
fixed, the model �gain� parameters were then identified from the data for the opening move-
ment of the control signal (0% control signal to 100% control signal). Finally, with the leak-
age and gain parameters fixed, the control actuator hysteresis parameters were identified from
all of the commissioning data (0% control signal to 100% control signal and then reverse from
100% to 0%). 

The steady-state detector also required two parameters for each monitored subsystem. One
describes the dominant subsystem time constant in relation to system dynamics and the other
controls the amount of data that is considered to be transient. As the stringency of the parameter
is increased, the amount of data passed on to the FDD methods is reduced. Trials on a number of
HVAC systems, including those systems tested here, have revealed that the values of these
remain quite consistent for similar subsystems. 
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In concept, the methods do not require the selection of fault thresholds. A fault is simply
detected when a prediction error is considered to be significant against some statistical measure.
Similarly, a statistically significant change in the value of a recursively re-estimated fault
parameter could also be used to indicate the presence of a fault. In practice, the scheme did not
formally account for the uncertainty with respect to the sensitivity of the model output to
unmodeled phenomena. The addition of the thresholds, above which a prediction error generated
an alarm, was a subjective and somewhat ad hoc attempt to account for this uncertainty. Better
model representation of the process and a formal methodology to account for the uncertainties

Table 10. Parameters of First-Principles Models
Subsystem Design Parameters Calibrated Parameters
Fan-duct Rotational speed of the fan (estimated 

from the control signal) (�)
Static pressure sensor offset (Pa)

Static pressure at zero mass flow rate 
(Pa)

Total fan/duct resistance to airflow 
(sPa/kg)

Fan minimum rotational speed (�)
Fan maximum rotational speed (�)
Control signal relating to minimum 
rotational speed (�)
Speed at which fan belt slippage
occurs (�) 

Air temperature rise 
due to fan

Control signal relating to the minimum 
fan speed (�)

Minimum temperature rise (K)

Maximum temperature rise (K)
Economizer (dampers) Mixed air temperature offset (K)
 Parameter that describes the degree of 

curvature in the process relationship (�)
Parameter that defines the asymmetry of 
the process (�)

 Leakage through the return damper (�)
 Leakage through the outside air damper 

(�)
 (actuator) High activation point (�)

Low activation point (�)
Hysteresis (�)

Cooling Coil (coil) Coil face area (m2) Heat-transfer scaling factor (�)
Number of rows (�) Supply air temperature sensor offset (K)
Number of circuits for parallel flow (�) Fractional flow leakage (�)

 (three port control 
valve)

Maximum chilled water mass flow rate 
(kg/s)

Curvature coefficient (�)

Authority (�)
 (actuator) High activation point (�)
 Low activation point (�)

Hysteresis (�)
Note: The parameters in italics are those used for fault diagnosis.
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from all sources has been shown to produce a more sensitive and a more robust first-principles-
based fault detection scheme than that used in this research (Buswell 2001).

The expert-rule method that employs the bins requires a number of parameters to locate the
bins within the operating space for each subsystem (i.e., what value of control signal is attrib-
uted to low, mid and high operation). The expert rules are generic and principally describe what
evidence is expected to exist with respect to the fault and the bin categories.

The sensitivity of the electrical power FDD method to faults and robustness with respect to
false alarms are functions of the extent to which the semiempirical power correlations capture
the process characteristics and the calculation of a large number of thresholds and other
parameters, listed in Table 11. These thresholds and parameters can be usefully grouped as
follows: (1) normal equipment power levels, from measurement or manufacturer�s data;
(2) statistical confidence intervals; (3) fault detection thresholds based on commissioning the
FDD method with known faults; or (4) data analysis regions, based on commissioning the
FDD method with known faults and designed to improve the robustness of the method in both
detection and diagnosis.

The list of parameters does not include the parameters in the third-order polynomial curve fits
that express the correlation of electrical power with flow or rotational speed. Values for these
parameters were determined from training data for individual fans and pumps.

Required values for the first two groups are easily obtained or assigned. One goal of ongoing
research is to reduce the number of parameters and thresholds in the last two groups, to simplify
and eventually automate the process of commissioning this FDD method. To that end, the AHU-
1 test period in this research provided an opportunity to replace the effective but hand-tuned
analyses of fan power as a function of speed and pump power as a function of valve position
with more straightforward polynomial power correlations, for which the statistics are rigorous
and the only need is to supply a confidence interval. 

Calibration of the power correlations for normal operation was entirely a passive procedure
and demanded only a reasonable range of operating conditions. For the test building, about 10 h
of data from power meters and supporting sensors were required. At the test building, these data
were collected in a single summer season. These data were sufficient for fault detection but not
diagnosis, where knowledge of fault signatures was required to distinguish faults that reveal
themselves as a deviation in a power correlation for a single component (i.e., the supply fan).
Fault diagnosis rules developed for equipment in the test building relied on observations of
faulty performance. Further tests in different buildings are necessary to determine the extent to
which these rules are general or can be easily adjusted. It is clearly not practical to commission
an FDD method with onsite faults.

The first-principles-based methods are formulated to represent what is normally considered as
�ideal� system operation. In this respect, they are sensitive to any nonideal system behavior,
which could represent a design fault. Two forms of nonideal behavior affected the sensitivity
and robustness of the first-principles methods during these tests. Both forms concerned changes
in the relative proportion of outside and recirculation airflow rates through the mixing box, as
the supply fan speed varied. One form of this phenomenon is reported in Seem et al. (1998). The
nonideal behavior could cause innovations in both the mixed-air temperature and supply air tem-
perature, suggesting faults in the economizer and cooling coil respectively. 

In addition to the effect of the nonideal system behavior, the first-principles-based methods
were sensitive to the changeover in system configuration necessary at the start of each test
period (the test systems were used for other project work in between the seasonal tests con-
ducted in this study). The changeover in configuration concerned control strategies and reinstal-
lation of some sensors. Further, some physical disruption to the systems, such as repairs to
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damper linkages, was necessary between test periods. This could have caused a change in the
system characteristics and reduced the validity of the model calibration. 

The nonideal system characteristics and the necessary disruption to the state of the system
that occurred between test periods resulted in the setting of fault thresholds for each test
period. This was done in a subjective manner to eliminate false alarms during periods of

Table 11. Thresholds and Other Parameters Required by 
Electrical Power FDD Method

Description of Thresholds and Parameters Value
Fan-power correlations with airflow and speed control signal
Maximum deviation of static pressure from set point for training data 25 Pa (0.1 in. of water)
Confidence level to establish boundary between normal and faulty data 90%
Airflow boundary to distinguish stuck-closed recirculation damper from static 

pressure offset/drift1
500 cfm

Fan power at 100% speed below which a slipping-fan-belt fault was flagged, 
subject to a minimum time duration2

1 kW

Time duration for low fan power at 100% speed, above which a slipping-fan-belt 
fault was flagged

3 one-min.
power samples

Pump-power correlation with cooling coil valve position control signal
Valve position control signal above which pump-power data were analyzed for a 

cooling coil capacity fault3
40%

Measured normal-operation power level of the secondary chilled water pump 400 W
Minimum decrease of pump power below normal-operation value, in excess of 

which a coil capacity fault was flagged4
10 W

Confidence level to establish boundary between normal and faulty data (used for 
AHU-1)

90%

Chiller-cycling analysis
Power level above which the chiller is considered to be operating in the low-

power stage5
4 kW

Cycling interval when the cooling coil valve control signal is at 0%, below 
which a leaky-valve fault is flagged4

30 min.

Normalized outdoor air temperature, below which chiller cycling is analyzed to 
detect a leaky recirculation damper6

0.2

Power-oscillation analysis
Size of sliding window for averaging one-minute power data from submeters 5 samples
Standard deviation of power signal above which a fault is flagged, as a 

percentage of average power
15%

1This parameter was used solely for fault diagnosis.
2Fan-power analysis at 100% speed was used in AHU-A and B to detect the slipping fan belt. For AHU-1 this approach
was replaced by the more rigorous and sensitive polynomial correlation of fan power with speed control signal.
3Pump-power analysis relative to a measured and near-constant normal-operation value was used in AHU-A and B to
detect the coil capacity fault. For AHU-1 this approach was replaced with a polynomial correlation of pump power with
valve position control signal.
4The parameters for the decrease in pump power and the change in chiller cycling interval were used for a single-stage
detection and diagnosis in the test building, where the number of faults was limited.
5The chiller�s high-power stage was not of concern, because the chiller-cycling analysis was limited to low-load condi-
tions when the chiller was either off or in the low-power state.
6The normalized outdoor air temperature, defined in Shaw et al. (2002), is the difference between the outdoor air temper-

ature and the supply air temperature set point, normalized by the difference between the supply and room air temperature
set points.
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known normal operation (Norford et al. 2000). This approach was not completely effective for
the AHU-1 tests, during which the fault thresholds were adjusted for two consecutive days of
operation. Following the setting of the thresholds, the nonideal system behavior became more
predominant, which led to several false alarms for the test period. Although it was recognized
that the alarms were false and that they could be eliminated with very minor changes to the
thresholds (~0.25°C), the thresholds were not readjusted during the fault testing, because this
would not have been consistent with the FDD methodology as proposed for this project. In
practice, the thresholds could easily be made more robust by setting them over a longer period
of operation.

In some instances, the nonideal system behavior resulted in the setting of relatively wide fault
thresholds, which necessarily reduced the sensitivity of the methods, particularly for the more
subtle leakage faults. Considering that the systems were subject to change between test periods
and that they exhibited nonideal behavior, the results of this study make it clear, however, that
the first-principles methods remained robust in fault detection. The models were not recalibrated
to account for disruption to the systems that occurred between test periods.

The diagnosis of faults by the first-principles methods was less robust than the fault detection.
A number of faults detected during the blind test periods were misdiagnosed. Robust diagnosis
by expert rules requires the system to have operated over its complete range during the occur-
rence of a fault. Considering that some faults can force the system to move to, and remain at, one
operating point, this requirement is impractical. However, this restriction could be eliminated by
developing a methodology that includes the injection of test signals to exercise the system
across its range of operation once a fault has been detected.

Fault diagnosis by the recursive re-estimation of the first-principles-based model parameters
was sensitive to the unmodeled disturbances, the limited excitation in terms of operating condi-
tion, and the lack of independence of the parameters. It is unlikely that it would be possible to
include parameters to specifically represent all fault conditions. Evidence from this work sug-
gests that typical HVAC system data could probably support two recursively re-estimated
parameters; one describing the under/over capacity at the �high duty end� of operation and one
describing under/over capacity at the �low duty end� of operation. 

The electrical power FDD method was effective in detecting faults for AHU-A and AHU-B.
The detection methodology was straightforward for some faults, including those that affected
fan power for a given airflow (the stuck-closed recirculation damper and the pressure sensor off-
set), those that impacted the cycling of the reciprocating chiller, and the oscillating controller.
The detection methodologies for other faults were developed in response to the configuration
and operation of the equipment in the test building. Notably, the cooling coil capacity fault was
detected by identifying changes in the electrical power drawn by the secondary chilled water
pump. This method was effective only because the fault was introduced in a way that signifi-
cantly obstructed the water flow. Water-side tube fouling would likely not have been detected.
Detection of the slipping fan belt was effective but done with a threshold developed from obser-
vations of the impact of the fault, rather than by relying strictly on a fan power correlation.
Detection of this fault for AHU-A and AHU-B was also limited to 100% speed control signal, an
apparently unnecessary restriction on the use of the power-speed correlation that was eliminated
for AHU-1. This same restriction was employed in the first-principles model to distinguish this
fault from the pressure sensor offset.

Several of the faults introduced into AHU-1 did not produce detectable changes in electrical
power, including the stuck-open outside air damper, the obstruction of the cooling coil, and the
leaky heating coil valve. Detection failure in these cases is acceptable, because the FDD method
developed for other faults was rationally applied and simply did not reveal significant deviations
from normal operation. It is possible that further tuning of the method could have reliably
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revealed the leaky heating coil valve, in the test building and others where the heating coil is
upstream of the cooling coil. This will be pursued in the future.

As with the first-principles method, fault diagnosis via the electrical power FDD method was
less reliable than fault detection. Diagnosis techniques also required considerably more effort to
develop and commission. For example, it was relatively easy to measure the cycling periods of
the reciprocating chiller, but considerable care was required to establish operating regions where
the leaky recirculation damper could be diagnosed. Inadequate care in this step not only con-
founds the diagnosis process but leads to false alarms, as would occur if a change in chiller
cycling were flagged but that change were due solely to variations in the thermal load on the
chiller. Diagnosis of the stuck-closed recirculation damper and the pressure sensor offset
required careful observation of the HVAC plant and a knowledge of the normal control of the
mixing box dampers at different times of day and different seasons.

The electrical power method proved to be robust in terms of false alarm generation. None
were generated in the AHU-1 test period. In part, this is due to the choice of confidence intervals
for the power correlation; intervals of lower confidence would be tighter and would tend to
reveal more faults and generate false alarms.

CONCLUSIONS
The relatively rare opportunity to thoroughly test FDD methods in a building operated as a

research facility is an invaluable bridge between simulation and lab testing and field deploy-
ment. Such �real-world� issues as sensor placement and calibration, fault magnitudes, and
imperfectly understood equipment performance under normal and faulty operation make it
unlikely that a first-generation FDD method will successfully leap from lab to commercial use.
Controlled field tests such as were required for this project are not so much a proof of perfor-
mance of fully mature methods but a means of revealing flaws in the methods and subsequently
refining them to the point where their performance is substantially improved.

The first-principles-model-based methods can be implemented without installation of special
sensors. However, further work is required to shorten the time required to gather the training
data for model calibration. The electrical power correlation method requires the use of addi-
tional electrical power sensors, but models are calibrated primarily from data collected during
normal system operation. The advantage of a single testing procedure and models that can
extrapolate is that the FDD scheme is operational immediately after installation (and calibration)
of the FDD software. Normal operation data could be used to calibrate the first-principles-based
models in a similar manner to the electrical power correlation approach. The disadvantage, how-
ever, is that data from across the subsystem operating season are required before the models are
fully calibrated.

As shown in Tables 5 through 8, both FDD methods performed reasonably well in detecting
faults. The electrical power FDD method was less developed and may not apply to other sites.
Power correlations can be used as an effective method for detecting faults, but it is not clear how
much work will be required to adapt the basic approach to different plants. The first-principles-
based scheme is more mature than the electrical power correlation scheme as an FDD approach.
The methods have been applied to other systems installed in real buildings. The reduction of
false alarms and increase in sensitivity in the detection of faults has been addressed in subse-
quent work by Buswell (2001). In the future, developers of the electrical power method will
consider extending that method to use additional sensors, such as temperature sensors typically
found in control systems. Table 12 summarizes the evaluation of the two methods.

Both FDD approaches require some additional information to diagnose faults. This effort was
simplified at the test site because of the limited number of introduced faults. Implementation of



70 HVAC&R RESEARCH

either method on a system with no prior knowledge of the causal faults will almost certainly
result in ambiguous diagnosis. 

The first-principles-based methods are sensitive to the occurrence of nonideal system behav-
ior. The detection of nonideal system behavior by the method is an advantage where nonideal
behavior is considered to be a design fault. However, where the nonideal behavior must be
accepted as part of the system characteristic, the uncertainty in the prediction error increases,
reducing the sensitivity of the method to fault detection. Better modeling of the system behavior
results in a reduction in the uncertainty in the model predictions and improved fault detection
rate. The gray-box electrical power models are less sensitive to nonideal system behavior
because the correlations model the system behavior under closed-loop control. The gray-box
modeling methods were, therefore, more robust than the first-principles-based methods in that
they generated no false alarms. 

Robust fault diagnosis using first-principles-based models and expert rules is limited by the
need for the system to have moved across its range of operation during the occurrence of a fault
condition. A way of generating this information �out of season� would be to inject test signals

Table 12. Comparison of First-Principles Physical Models FDD Method and 
Gray-Box Electrical Power Method

Feature
First-Principles
Physical Models

Gray-Box Electrical
Power Models

Operates only on steady-state 
data

Yes Yes

Calibration time 15 to 23 h 10 h
Active or passive training data Active; a single training period is 

sufficient
Passive; need seasonal data

Training methodology Well defined Less well defined
Thresholds Statistical confidence intervals, 

arbitrarily selected thresholds
Statistical confidence intervals, 

arbitrarily selected thresholds
Critical sensors Supply, return, mixed-air and 

outdoor air temperature sensors, 
return air and outdoor air 
humidity, supply airflow, 
control signals

Electrical power meters, supply 
airflow, control signals for valves 
and fan variable-speed drives

Fault detection Excellent results for faults which 
the methods were tuned to find 

Excellent results for faults which 
the methods were tuned to find

Fault diagnosis Moderate number of 
misdiagnoses

Good results when list of potential 
faults is small

False alarms Moderate None
Extension of method to larger list 

of faults
Possible Some faults cannot be detected 

with electrical power 
measurements

Other issues Excessive number of fault 
parameters in models

Effects of faults on electrical power 
must be carefully defined for each 
component (fan, pump and 
chiller) in each system (constant 
volume, VAV, etc.)
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that excite the system across the deficient region. Fault diagnosis by the recursive re-estimation
of model parameters did not prove to be reliable in the test environment in this research. 

The apparent complexity of both methods reflects their degree of development. Much of the
identification and data gathering processes described could be fully automated. As the methods
mature, the selection of some of the required parameters will become better understood and eas-
ier. There are still issues surrounding the sensitivity and robustness of FDD methods (Dexter
and Pakanen 2001). A balance between sensitivity in detecting faults and robustness in minimiz-
ing false alarms is needed. More testing with data sets from real buildings is required, and in
particular a concerted effort is required to generate reliable, streamlined, and automated com-
missioning processes for FDD methods. Both FDD methods investigated here need to be sim-
pler in terms of application and the analysis of the data and need to be more �transparent� to the
end user.
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